
Progressive Data Retrieval for Distributed
Networked Storage

Yunghsiang S. Han, Fellow, IEEE, Soji Omiwade, Member, IEEE, and

Rong Zheng, Senior Member, IEEE

Abstract—We propose a decentralized progressive data retrieval (PDR) mechanism for data reconstruction in a network of Byzantine

and crash-stop nodes. The scheme progressively retrieves stored data, such that it achieves the minimum communication cost

possible. In particular, PDR gracefully adapts the cost of successful data retrieval to the number of Byzantine and crash-stop storage

nodes. At the core of PDR is an incremental Reed-Solomon decoding (IRD) procedure that is highly computation efficient for data

reconstruction. IRD’s computation efficiency arises from its ability to utilize intermediate computation results. In addition, we provide an

in-depth analysis of PDR and compare it to decentralized erasure coding and decentralized fountain coding algorithms for distributed

storage systems. Moreover, our implementation results show that PDR has up to 35 times lower computation time over the state-of-

the-art error-erasure decoding scheme for distributed storage systems. In our analysis, we also show that the code structure of PDR

and the number of available storage nodes are independent of each other, and they can be used to control both the data dissemination

and retrieval complexity.

Index Terms—Fault tolerance, error control codes, Reed-Solomon codes, byzantine failure

Ç

1 INTRODUCTION

THE cost of storage has decreased to the point that most
storage-space providers offer terabytes of affordable

storage to their respective consumers. Moreover, low-power
storage media have become widely used in embedded
devices and mobile computers. In order to harness the ever
growing capacity and decreasing cost of storage for
distributed networked storage systems, the following
challenges must be addressed:

. Storage volatility due to network disconnections,
varying administrative restrictions and nodal-mo-
bility.

. Data erasures; the prevalent flash media has limited
program-erase cycles because repeated erasures of
any particular block may result in modifications of
neighboring blocks.

. Software bugs or malicious attacks, where an
adversary manages to compromise the system and
modify its data.

At the core of a robust networked storage system is a
coding scheme that maps information bits to coded bits that
are stored distributedly using a set of storage nodes. The
information bits can be retrieved from the coded bits, and
we refer to the units of this bidirectional mapping as

symbols. In this paper, coded symbols and storage symbols
are used interchangeably. An ðn; kÞ erasure code can be
defined by the following two primitives:

. encode c ¼ ðu; n; kÞ takes as input, k information
symbols u ¼ ½u0; u1; . . . ; uk�1�, and returns a coded
vector c ¼ ½c0; c1; . . . ; cn�1�. Similarly, the coded
symbols are stored on n storage nodes, one per node.

. decode u ¼ ðr; n; kÞ accesses a subset of storage
nodes and returns the original k information
symbols from possibly corrupted symbols.

For the decode primitive, if any k of the n coded symbols
suffice to reconstruct the original data, the code has optimal
reception efficiency and is referred to as an ðn; kÞ-Maximum
Distance Separable (MDS) erasure code.

A crash-stop or erasure node in a networked storage
system is one that becomes unavailable because it can
neither transmit nor receive data. Byzantine nodes are those
nodes that fail in an arbitrary manner and cannot be
trusted. They are more pertinent than erasure nodes given
the prevalence of cheap storage devices, software bugs, and
malicious attacks [1]. Crash-stop nodes can be identified,
via keep-alive messages for instance. However, the identity
of Byzantine nodes can be known, to a data collector
requiring data reconstruction, only via an error-erasure
decoding algorithm.

Efficient encode and decode primitives that can detect
data corruption and handle Byzantine failures serve as a
fundamental building block to support higher level abstrac-
tions such as multireader multiwriter atomic register and
digital fingerprints in dependable distributed systems [2], [3].
Given the primitives’ fixed error correction capability, their
efficiency can be evaluated using the following: the storage
overhead, measured as the ratio between the number of
storage symbols and total information symbols; the encoding
and decoding computation cost; and the communication

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012 2303

. Y.S. Han is with the Department of Electrical Engineering, National



overhead, measured in terms of the total bits transferred in
the network for encoding and decoding. The communication
overhead is most significant in wide-area networks, sensor
networks, and low-bandwidth storage systems [4], [5]. In this
work, we propose efficient methods to achieve minimum
communication costs.

Reed-Solomon (RS) codes have been used for storage in
stand-alone storage systems [6]. However, our work
concerns RS codes for networked storage. Even though RS
codes can be applied to achieve minimum communication
overhead, their centralized nature and high coordination
overhead make them unsuitable [7], [8]. To address these
classical RS coding deficiencies and the need for error
correction capabilities in distributed storage systems, we
propose a storage-optimal and decentralized coding scheme
that disperses contents of a data file, and retrieves it
efficiently in networked storage systems. Our RS coding
scheme provides better performance than the decentralized
erasure and fountain coding schemes.

The key novelty of our solution lies in a progressive data
retrieval procedure, which retrieves just enough data from
live storage nodes and performs decoding incrementally. As
a result, both communication and computation costs are
minimized, and adapt to the degree of errors, due to
Byzantine nodes, in the system. We provide an analytical
characterization of the communication cost for data retrieval
using the proposed scheme in the presence of arbitrary
Byzantine nodes. Our implementation studies demonstrate
up to 35 times lower computation time in decoding, of the
progressive data retrieval scheme relative to the classical RS
decoding scheme. Moreover, the proposed scheme is
comparable to that of a genie-aid decoding process, which
assumes knowledge of failure modes. In this paper, we make
the following contributions:

. Design and implementation of a novel progressive
data retrieval algorithm that is storage and commu-
nication optimal, and computationally efficient.

. Provision of an analytical model to evaluate the
communication cost of the proposed data retrieval
algorithm.

. Security analysis of the proposed decoding scheme.

The rest of the paper is organized as follows. In Section 2,
we provide some background information on RS codes.
Related work is provided in Section 3, and the progressive
data retrieval scheme is presented in Section 4, with the
details of the incremental RS decoding algorithm in Section 5.
We derive the communication, computation, and security-
strength complexities of our proposed scheme in Section 6
and compare it to existing storage schemes. Implementation
and evaluation results are presented in Section 10 and we
conclude the paper in Section 13.

2 BACKGROUND

In distributed storage systems, ensuring data persistence
given the existence of crash-stop and Byzantine nodes in the
network requires the introduction of redundancy for data
storage. The simplest form of redundancy is replication; as a
generalization of replication, erasure coding offers higher
storage efficiency [9]. To store an arbitrary file using ðn; kÞ

erasure codes, we divide the file into groups of k symbols.
For each group, the k symbols are encoded into n coded
symbols and stored at n respective storage nodes.

2.1 RS Codes

An ðn; kÞ-RS code is an ðn; kÞ-MDS code with error
correction capabilities. They can recover the original code-
word when v symbols are erroneous, if v � bn�k�s2 c, where s
is the number of erased symbols. RS codes are the most
well-known class of MDS codes. They operate on symbols
of m bits, and are linear codes where each symbol is in
GF ð2mÞ. n and k satisfy n ¼ 2m � 1 and n� k ¼ 2t, where t
is the error correction capability of the code.

2.2 Encoding

Let the vector of k information symbols in GF ð2mÞ be u ¼
½u0; u1; . . . ; uk�1� and uðxÞ be the information polynomial of u
represented as (1). The codeword polynomial, cðxÞ, corre-
sponding to uðxÞ can be encoded as (2), where gðxÞ is a
generator polynomial of the RS code. The generator poly-
nomial can be computed as (3); � is a primitive element in
GF ð2mÞ and can be determined in advance. b is an arbitrary
integer, and gi is in GF ð2mÞ. It follows from (2) and (3) that
�b; �bþ1; . . . ; �bþ2t�1 are the roots of gðxÞ and cðxÞ

uðxÞ ¼ u0 þ u1xþ � � � þ uk�1x
k�1 ð1Þ

cðxÞ ¼ uðxÞgðxÞ ð2Þ

gðxÞ ¼ ðx� �bÞðx� �bþ1Þ � � � ðx� �bþ2t�1Þ
¼ g0 þ g1xþ g2x

2 þ � � � þ g2tx
2t:

ð3Þ

An alternative encoding mechanism for RS codes is the
matrix-vector product shown in (4) [9]. GG in (5) is the
Vandermonde matrix, and any k columns are linearly
independent. The constructions in (2) and (4) result in the
same Reed-Solomon code, when b equals 1

cc ¼ uuGG ð4Þ

GG ¼

1 1 1 � � � 1
� �2 �3 � � � �n

�2 ð�2Þ2 ð�3Þ2 � � � ð�nÞ2

..

.

�k�1 ð�2Þk�1 ð�3Þk�1 � � � ð�nÞk�1

2
666664

3
777775: ð5Þ

2.3 Decoding

Denote the received polynomial as rðxÞ; if there are neither
erasures nor errors in the received codeword, then rðxÞ
matches the original codeword polynomial, cðxÞ. When
errors and erasures exist in rðxÞ, the decoding is a multistep
procedure: Auxiliary polynomials, also known as syn-
dromes, are first computed from the original codeword
cðxÞ. These syndromes are then used to compute an error-
locator polynomial that is used to identify erroneous symbols
in the received codeword. After all errors have been
identified and corrected in rðxÞ, any k symbols are selected
and the original set of information symbols uðxÞ can be
derived by inverting the k columns of the Vandermonde
matrix that correspond to the k selected symbols.

2304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012



We discuss each step in detail, beginning with decoding
when there are only Byzantine nodes. Later, we generalize to
codewords having erasures. The received polynomial can be
written as a sum of the original codeword and the errors
introduced, as shown in (6). eðxÞ is the polynomial indicating
the locations and values of each error in rðxÞ. Syndrome Si is
given by the expression in (7), for each i in fb; bþ 1; . . . ;
bþ 2t� 1g. Since gðxÞ and cðxÞ have �b; �bþ1; . . . ; �bþ2t�1 as
roots, then if the ith symbol in the received codeword rðxÞ is
not erroneous, Si evaluates to zero

rðxÞ ¼ cðxÞ þ eðxÞ where eðxÞ ¼
Xn�1

j¼0

ejx
j ð6Þ

Si ¼ rð�iÞ ¼ eð�iÞ ¼
Xn�1

j¼0

ej�
ij: ð7Þ

Assume that v � t errors occur in unknown locations
j1; j2; . . . ; jv of the received polynomial. Then, eðxÞ in (6) can
be expressed as (8), and ej‘ is the value of the ‘th error, for
each ‘ in f1; 2; . . . ; vg. A requirement for successful
decoding is to determine j‘ and ej‘ for all ‘. Instead of
solving the 2t syndrome equations in (7), an error-locator
polynomial is introduced in (9). For all ‘ in f1; 2; . . . ; vg, �‘

are the coefficient of �ðxÞ, when the product is simplified,
where �0 is unit. By Newton’s identity, we then have (10),
where i 2 fbþ v; bþ vþ 1; . . . ; bþ 2t� 1g [10]

eðxÞ ¼
Xv
‘¼1

ej‘x
j‘ ð8Þ

�ðxÞ ¼
Yv
‘¼1

ð1� x�j‘Þ ¼
Xv
‘¼0

�‘x
‘ ð9Þ

Si ¼ �
Xv
j¼1

�jSi�j: ð10Þ

The coefficients of the error-locator polynomial can be
determined by applying the classical Berlekamp-Massey
algorithm (BMA), Welch-Berlekamp (WB) or Euclid’s algo-
rithm to solve (10). Once all coefficients of the error-locator
polynomial are found, the values �j‘ can be determined by
successive substitution through a procedure known as the
Chien search. We then solve for each ej‘ via the Forney
formula [10]. Fig. 1 summarizes the RS decoding process.

When both errors and erasures exist, an error-erasure
decoding algorithm must be implemented in order to decode
the received vector efficiently [10], [11], [12]. Let rðxÞ be the
received polynomial and rðxÞ ¼ cðxÞ þ eðxÞ þ �ðxÞ ¼ cðxÞ þ
�ðxÞ, where eðxÞ ¼

Pn�1
j¼0 ejx

j is the error polynomial, �ðxÞ ¼Pn�1
j¼0 �jx

j the erasure polynomial, and �ðxÞ ¼
Pn�1

j¼0 �jx
j ¼

eðxÞ þ �ðxÞ the errata polynomial. For error-erasure decod-
ing, two extra decoding steps are needed compared with the
error-only decoding: calculation of erasure-locator polyno-
mial and computation of the modified syndromes. The
modified syndromes are then used to replace the normal
syndromes in the decoding procedure. If the location of
the erasures are given, the erasure-locator polynomial can be
calculated directly as follows. Let i1; i2; . . . ; is be the s erasure

positions. Using the definition of �ðxÞ shown in (11), the
modified syndromes are obtained by (12), where j is in fbþ
s; bþ sþ 1; . . . ; bþ 2t� 1g

�ðxÞ ¼
Ys
‘¼1

ðx� �i‘Þ ¼
Xs
‘¼0

�‘x
‘ ð11Þ

Qj ¼
Xs
i¼0

�s�jSj�i: ð12Þ

3 RELATED WORK

XOR-based erasure-resilient coding schemes have been
applied to handle crash-stop failures. In practice, these
codes encode and decode data faster than finite field-based
RS codes [6]. However, they cannot handle Byzantine
failures. Our progressive data retrieval coding scheme can,
however, tolerate both crash-stop and Byzantine failures.

In the context of network storage for wireless sensor
networks, randomized linear codes and fountain codes have
been applied with the objective of a data collector retrieving
data from each of k data sources by accessing any k out of n
storage nodes [7], [8]. Although, up to n� k crash-stop node
failures can be tolerated, none of these methods are suitable
for data reconstruction when Byzantine nodes exist.

Goodson et al. propose a coding scheme that handles
Byzantine and crash-stop failures [2]. In particular, they
design a consistency protocol for asynchronous environ-
ments via versions. Their protocol bares similarities with our
progressive scheme in that it uses RS codes and accounts for
data integrity. However, it does not address the commu-
nication and computation aspects of progressive data
retrieval when there are failures in the distributed storage
system. Instead, coded fragments are retrieved one time, and
deemed one of three states: complete, incomplete, or
repairable, depending on the degree of errors in the system.

4 PROGRESSIVE DATA RETRIEVAL

Before presenting our proposed data reconstruction algo-
rithm for distributed networked storage, we explain how a
data file is stored in the network. We use the abstraction of a
data node that is a data source, where networked storage
nodes are used to achieve data persistence and any storage
node may become crash-stop or Byzantine. Any RS decoding

HAN ET AL.: PROGRESSIVE DATA RETRIEVAL FOR DISTRIBUTED NETWORKED STORAGE 2305

Fig. 1. Reed-Solomon decoding for an arbitrary codeword.



algorithm may fail to identify a data-integrity violation. Since
an RS decoding mechanism is at the core of our proposed
algorithm, each data node adds a message authentication
code to each data block it generates for data integrity. One-
way hash functions such as the MD5 or SHA-1 can be applied
[13], and we adopt CRC codes because they suffice to identify
errors [9], [14]. Let the size of the original file before adding a
CRC header be T0 bits. If the size of the CRC overhead is r
bits, then the probability of not detecting one error by the
CRC code is 1=2r. The overhead is dependent only on T0 and
r and can be amortized by using large data blocks.

After adding the CRC, each data block is then partitioned
into information symbols of length m bits and encoded
using either the polynomial or matrix product provided in
Section 2.2. The data node divides its data into dT=me
symbols, where T ¼ T0 þ r, and each symbol is an element
in GF ð2mÞ. Unlike our previous decentralized scheme for
distributed networked storage [15], the number of informa-
tion symbols, k̂, per encoding group of the proposed
scheme is decoupled from the number of data nodes, k.
Hence, we will employ an ðn; k̂Þ-MDS code. Next, the set of
dT=me symbols are partitioned into d information groups
each of k̂ symbols, where d is defined as shown in (13). CRC
codes are added to every information group, and the data
size T includes those bits added by CRC codes. The last
information group may have less than k̂ symbols. In this
case, zeros are appended during the encoding procedure

d ¼4 dT=me
k̂

� �
: ð13Þ

We write the ith information group for encoding as the
information vector, uui ¼ ½ui0; ui1; . . . ; uiðk̂�1Þ�, where 1 � i �
d. The data node encodes uui into cci ¼ ½ci0; ci1; . . . ; ciðn�1Þ�
with n symbols as (14), where GG is the Vandermonde matrix
in (5), after substituting k̂ in for k. The data node then packs

all ci;j, 1 � i � d, and sends them with the index, j, to
storage node ðjþ 1Þ via the network

cci ¼ uuiGG: ð14Þ

For data reconstruction, a data collector must access a
sufficient number of storage nodes to ensure data integrity.
Among n storage nodes, let the number of crash-stop nodes
that have not been accessed and the number of Byzantine
nodes be s and v, respectively. The Vandermonde matrix,
GG, in (14) is a generator matrix for an RS code and thus an
error-erasure decoding algorithm can recover any code-
word if there is no error in at least k̂ encoded symbols [9].
Without loss of generality, assume that the data collector
retrieves encoded symbols from storage nodes j0; j1; . . . jk̂�1.
If no error is present, the k̂ symbols in the ith group of any
data node can be recovered by solving the following system
of linear equations:

½ui0; ui1; . . . ; uiðk̂�1Þ�ĜG ¼ ½rij0
; rij1

; . . . ; rijk̂�1
�; ð15Þ

where

ĜG ¼

1 1 � � � 1
�j0 �j1 � � � �jk̂�1

ð�j0Þ2 ð�j1Þ2 � � � ð�jk̂�1Þ2

..

.

ð�j0Þk̂�1 ð�j1Þk̂�1 � � � ð�jk̂�1Þk̂�1

2
666664

3
777775:

ĜG can be constructed by the primitive element and the
index associated with rij‘ , 0 � ‘ < k̂.

From Section 2, we know that RS codes can recover from
any v errors, so long as v � bn�k̂�s2 c. Therefore, if the number
of compromised nodes is small, more erasures can be
tolerated and less nodes can be accessed by assuming these
nodes are unavailable.

Our proposed data reconstruction algorithm, PDR, is
illustrated in Fig. 2. PDR proceeds in stages, where l errors
are assumed at stage l and each stage corresponds to an
attempt to reconstruct the original codeword (Lines 12-14).
At the core of PDR is an efficient incremental RS decoding
algorithm, IRD, illustrated in Fig. 3. IRD allows for data
reconstruction even when some nodes are Byzantine or
crash-stop, and it can utilize intermediate computation
results from previous stages and decode incrementally to
avoid unnecessary computations.

If a call to IRD does not successfully decode on Line 15, or
the decoded codeword fails the CRC check on Line 7, then
there must exist more Byzantine nodes than IRD can handle at
this stage. In order to correct one more error, PDR retrieves two
additional symbols given that the number of erasures
allowed is reduced by two. Therefore, the total number of
symbols retrieved at stage l is k̂þ 2l. Using a ð1;023;401Þ-MDS
code and a 1 percent error Byzantine node rate, 409.2 storage
nodes are accessed on average (c.f.: Section 10). Hence, PDR
makes 409:2�401

2

� �
¼ 5 decoding requests to IRD. Consider a

naive scheme that retrieves coded symbols from all reachable
storage nodes and decodes only once. The naive scheme may
incur less total computation than PDR, but has a high
communication cost, since coded symbols must be retrieved
from every node that is not crash-stop. PDR handles such
tradeoffs between computation and communication more

2306 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 2. PDR.



gracefully. For any coding group, if all symbols have been
retrieved and PDR still cannot successfully decode, then
Line 17 signals a decoding failure.

PDR achieves minimum communication cost as addi-
tional symbols are retrieved only when necessary. Moreover,
we may substitute in the state of the art Berlekamp-Massey
algorithm or either of the Welch-Berlekamp or euclidean
algorithm in for IRD, on Line 15 to reconstruct the original
codeword [9]. Our implementation results, however, show
that IRD is up to 35 times faster than the BMA and we
provide the reasons why in Section 5.

5 IRD

Compared to classical RS decoding, IRD utilizes intermediate
computation results and decodes incrementally as more
symbols become available. In this section, we characterize the
operations in Fig. 3 and highlight the incremental computa-
tion process of IRD.

5.1 The Basic Algorithm

Given the received coded symbols ½r0; r1; . . . ; rn�1� with
erasures set to be zero, the generalized syndrome poly-
nomial SðxÞ can be calculated as follows:

Xn�1

j¼0

rj�
jb QðxÞ �Qð�jÞ

x� �j ¼
Xn�1

j¼0

�j�
jb QðxÞ �Qð�jÞ

x� �j ; ð16Þ

where QðxÞ is an arbitrary polynomial with degree n� k̂
[16]. Assume that v errors occur in unknown locations
j1; j2; . . . ; jv and s erasures in known locations m1;m2; . . . ;
ms of the received polynomial. Then,

eðxÞ ¼
Xv
‘¼1

ej‘x
j‘ and �ðxÞ ¼

Xs
‘¼1

�m‘
xm‘ :

ej‘ is the value of the ‘th error, ‘ ¼ 1; . . . ; v, and �m‘
is the

value of the ‘th erasure, ‘ ¼ 1; . . . ; s. Since the received
values in the erased positions are zero, �m‘

¼ �cm‘
for

‘ ¼ 1; . . . ; s. The decoding problem is to determine all j‘, ej‘ ,
and �m‘

. Let E ¼ fj1; . . . ; jvg, M ¼ fm1; . . . ;msg, and
D ¼ E [M. Clearly, E \M ¼ ;. A key equation for decod-
ing RS codes is

�ðxÞSðxÞ ¼ �ðxÞQðxÞ þ �ðxÞ; ð17Þ

where

�ðxÞ ¼
Y
j2D

ðx� �jÞ ¼
Y
j2E

ðx� �jÞ
Y
j2M

ðx� �jÞ

¼ �EðxÞ�MðxÞ
ð18Þ

�ðxÞ ¼
X
j2D

�j�
jb
Y

i2D;i 6¼j
ðx� �iÞ ð19Þ

�ðxÞ ¼ �
X
j2D

�j�
jbQð�jÞ

Y
i2D;i 6¼j

ðx� �iÞ: ð20Þ

If 2vþ s < n� k̂þ 1, then (17) has a unique solution
f�ðxÞ;�ðxÞ;�ðxÞg. Instead of solving (17) by the euclidean
or Berlekamp-Massey algorithm, we introduce a reduced
key equation that can be solved by the WB algorithm [9],
[16]. Let Q ¼ fjjQð�jÞ ¼ 0g. Let a set of coordinates U �
f0; 1; . . . ; n� 1g be defined by U ¼M \Q. A polynomial
�UðxÞ is then defined by �UðxÞ ¼

Q
j2Uðx� �jÞ, which is

known for the receiver since QðxÞ and M are both known.
Since �UUðxÞ divides both �ðxÞ and QðxÞ, according to (17), it
also divides �ðxÞ. Hence, we have the following reduced
key equation:

~�ðxÞSðxÞ ¼ �ðxÞ ~QðxÞ þ ~�ðxÞ; ð21Þ

where

�ðxÞ ¼ ~�ðxÞ�UðxÞ
QðxÞ ¼ ~QðxÞ�UðxÞ
�ðxÞ ¼ ~�ðxÞ�UðxÞ:

~�ðxÞ is a multiple of the error-locator polynomial �EðxÞ.
The reduced key equation has a unique solution if (22)
holds where degð�Þ is the degree of a polynomial, and jUj is
the cardinality of U. For all j 2 QnU, by (21), we have (23),

HAN ET AL.: PROGRESSIVE DATA RETRIEVAL FOR DISTRIBUTED NETWORKED STORAGE 2307

Fig. 3. IRD.



since ~Qð�jÞ ¼ 0. Note that �j is a sampling point and Sð�jÞ
the sampled value for (23). The unique solution
f~�ðxÞ; ~�ðxÞg can then be found by the WB algorithm with
time complexity Oððn� k̂� jUjÞ2Þ [9]

degð~�ðxÞÞ < degð~�ðxÞÞ < n� k̂þ 1þ s
2

� jUj ð22Þ

~�ð�jÞSð�jÞ ¼ ~�ð�jÞ: ð23Þ

Once all coefficients of the errata polynomial are
determined, all symbols having errors can be determined
by successive substitution through the Chien search. When
the solution of (21) is obtained, the errata values can be
calculated. Since recovering the errata values is unnecessary
for our problem, its computation is omitted. In summary,
there are three steps in the decoding of RS codes that must be
implemented. First, the sampled values of Sð�jÞ for j 2 QnU
must be calculated. Second, the WB algorithm is performed
based on the pairs ð�j; Sð�jÞÞ in order to obtain a valid ~�ðxÞ.
If a valid ~�ðxÞ is obtained, then error locations are found by
Chien search; otherwise, there is a decoding failure.

5.2 Incremental Computation

To reconstruct the original file, the data collector retrieves
encoded symbols from any k̂ storage nodes. Let QðxÞ in (16)
be given by the product in (24), where the data symbol in
position m‘ is erased. Moreover, these positions are erased
just before the first iteration on Line 12 of PDR. Finally, the
generator polynomial of the RS code encoded by (14) has
�n�k̂; �n�k̂�1; . . . ; � as roots

QðxÞ ¼ x� �m0ð Þ x� �m1ð Þ � � � x� �mn�k̂�1ð Þ: ð24Þ

In the ‘th iteration, ‘ errors and n� k̂� 2‘ erasures are
assumed in the codeword. Let ðjð‘Þ1 þ 1Þ and ðjð‘Þ2 þ 1Þ be the
two storage nodes accessed in the ‘th iteration. From U‘ in
(25) and the fact that the WB algorithm is an iterative
rational interpolation method, IRD determines values for
~�ð‘ÞðxÞ and ~�ð‘ÞðxÞ that satisfy (26), where Sð‘ÞðxÞ is the
generalized syndrome with ri ¼ 0 for all ri 2 U‘

U0 ¼ fm0; . . . ;mn�k̂�1g
U‘ ¼ U‘�1n

�
j
ð‘Þ
1 ; j

ð‘Þ
2

� ð25Þ

~�ð‘Þð�jÞSð‘Þð�jÞ ¼ ~�ð‘Þð�jÞ for all j 2 U0nU‘: ð26Þ

It has been shown that degð~�ð‘ÞðxÞÞ > degð~�ð‘ÞðxÞÞ for any
‘, a feature of the WB algorithm [9]. Thus, if degð~�ð‘ÞðxÞÞ<
n�k̂þ1þjU‘j

2 � jU‘j ¼ ‘þ 1=2, then a unique solution will exist
via (22). By the definition of the generalized syndrome
polynomial in (16), for i 2 U0nU‘, we have

Sð‘Þð�iÞ ¼
Xn�1

j¼0

rj�
j Qð�iÞ �Qð�jÞ

�i � �j

¼
Xn�1

j¼0;j62U0

rj�
j Qð�jÞ
�j � �i þ ri�

iQ0ð�iÞ

¼
Xn�1

j¼0;j62U0

Fj
�j � �i þ ri�

iQ0ð�iÞ;

ð27Þ

where Q0ðxÞ is the derivative of QðxÞ and Fj ¼ rj�jQð�jÞ.
Note that (28) follows, and Sð‘Þð�iÞ is not related to any rj,
where j 2 U0 and j 6¼ i

Q0ð�iÞ ¼
Y

j2U0;mj 6¼i
�i � �mj: ð28Þ

Hence, Sð‘�1Þð�iÞ ¼ Sð‘Þð�iÞ for all i 2 U0nU‘�1. This fact
implies that all sampled values in previous iterations can be
directly used in current iteration of the WB algorithm.

For any two polynomials, NðxÞ and WðxÞ, we define the
rank½NðxÞ;WðxÞ� as max½2 � degðWðxÞÞ; 1þ 2 � degðNðxÞÞ�.
IRD returns k̂ error-free symbols whenever a codeword
can be successfully decoded and 0 otherwise. Specifically, if
the degree of the error-locator polynomial does not equal to
the number of roots determined by the Chien in Line 33,
then the codeword was not successfully decoded.

6 PERFORMANCE ANALYSIS

In this section, we quantitatively analyze PDR and compare
it to Decentralized Erasure Codes (DEC) and Decentralized
Fountain Codes (DFC) [7], [8]. Our network consists of k
data nodes and n storage nodes, and each data node
requires robust distributed storage of its file of size T0. We
proceed first by briefly describing each coding scheme.
Then, we characterize each one over the following: the total
storage and its associated overhead, communication and
computation corresponding to data dissemination and data
retrieval when nodes fail, and the security strength.

DEC. Each storage node selects random and independent
coefficients in a finite field IFq, and stores a linear combina-
tion of all the received data from the k data nodes.
Randomized linear codes are used, where each data node
routes its packet to at least n

k log k storage nodes. A data
collector queries at least k storage nodes for data retrieval. In
the absence of Byzantine storage nodes, data retrieval is
successful with high likelihood if the finite field size is large.

DFC. Each storage node si, chooses a degree di, defined
as the number of data symbols required to form a linear
combination. Node si then XORs di data symbols, from di
arbitrarily chosen data nodes, where each data symbol is
selected from IFq. DFC trades off communication for
computation in that decoding requires more than k storage
nodes to be contacted, though both encoding and decoding
computations are linear in the number of original symbols.
We will show that the probability of successful decoding is
given by a parameter, �.

PDR. The k data nodes collectively generate kT0 bits, T0

bits per data node. Since each PDR data node adds rCRC bits
to its data, the file size at each data node is T ¼ T0 þ r. In our
analysis, the product of an m1 and m2-bit symbol requires
m1m2 XORs, and an addition requires only m1 XORs, where
the field of operation for the symbols is IFm1

and m1 � m2.
DEC and DFC both have one data symbol per data node for
each coding group, while PDR encodes k data symbols per
data node for each group. Consequently, each data node in
DEC/DFC and PDR has d T0

log qe and d groups per data node,
respectively, where d is given in (13). We show later in this
section that, although fountain codes have low encoding and

2308 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012



decoding computational complexities, PDR offers a much
lower communication cost for data retrieval.

6.1 Storage

The storage complexity for DEC is d T0

log qe � log q � T0 bits for
each storage node, since each storage symbol contains log q
bits, the field of operation is IFq, and there are d T0

log qe groups.
Since each storage node stores linear combination coeffi-
cients, where log k data nodes map to one storage node, the
overhead to store the coefficients, per storage node is

log k � log q þ dlog ke þ log
T0

log q

� �� �� 	
� log k log q bits:

The outer log k term corresponds to the set of data nodes
mapped to a storage node, while the inner one corresponds
to the bits required to identify any mapped data node. The
last term identifies the coding group.

Similar to DEC, the storage complexity for DFC per
storage node is also T0 bits. The overhead complexity per
storage node is given by

log
k

�
� dlog ke þ log

T0

log q

� �� �� 	
bits:

The derivation is similar to that of DEC except that the
average degree of a storage symbol is log k

� and there are no
linear combination coefficients, since every linear combina-
tion is simply an XOR of a set of data symbols.

Each data node in PDR encodes its own data with k̂
symbols per group to all storage nodes. Given there are d
groups and the application of the CRC, the per-node storage
complexity is T bits. Because PDR utilizes a code structure
known to all storage nodes, its overhead complexity per
storage node is dlog de, the bits required to index each group.

6.2 Data Dissemination

The DEC dissemination cost is

k � n
k

log k � T0

log q

� �
� log q � nT0 log kbits;

given that there are k data nodes, and each one sends its
data n

k log k times, for all d T0

log qe groups. Similarly, the
dissemination cost for DFC is

n � log
k

�
� T0

log q

� �
� log q � nT0 log

k

�
bits;

since there are n storage nodes, and each one stores log k
�

symbols on average. Unlike the decentralized erasure and
fountain codes, PDR does not replicate transmissions to
storage nodes. Therefore, its dissemination matches its
storage cost.

6.3 Encoding

Assume a software implementation on field operations
without lookup tables. For DEC, a linear combination
coefficient and a data symbol contain log q bits. Hence, the
computation cost of encoding per storage node is

ðlog2 qÞ � log k � T0

log q

� �
XORs;

since the cost of a multiplication is log2 q XORs, each symbol
is the result of log k linear combinations, for all groups.

For DFC, the encoding complexity per storage node is

log q � log
k

�
� T0

log q

� �
XORs;

since the cost of an XOR of two log q-bit symbols is log q
XORs, and each encoded symbol is the XOR of log k

� log q-bit
data symbols.

For PDR, each finite field multiplication costs m2 XORs.
Encoding for all groups and each data node yields

k̂ � ðm2 þmÞ � n � d XORs;

because of the matrix multiplications at each data node.

6.4 Data Retrieval: Crash-Stop Nodes

A data collector for DEC must receive the coefficients stored
in at least k storage nodes for data reconstruction. Hence,
the retrieval cost is simply kðd T0

log qe log q þ log k log qÞ bits in
total. Similarly for DFC, at least k storage nodes are
required for data reconstruction. The communication cost
to retrieve any data node’s file is

T0 1þ
log2 k

�ffiffiffi
k
p

 !
bits;

since kþ
ffiffiffi
k
p

log2 k
� symbols must be retrieved [7]. Similar to

DEC, the retrieval cost for PDR is k̂dkm � kT . Moreover,
PDR can allow for partial data retrieval. In particular, since
k storage nodes can store the original data in its initial form,
any one of these storage nodes can be requested to retrieve
1=k-portion for any group.

6.5 Data Retrieval: Crash-Stop and Byzantine
Nodes

In this section, the worst case is assumed: validation of the
degree of the error-locator polynomial and the Chien search
condition, Lines 31 and 33, respectively, of IRD do not
terminate the PDR prematurely.

We provide a probabilistic analysis of the cost of
communication by determining the number of stages the
algorithm requires, and the probability of successful decod-
ing. Given n storage nodes and an ðn; k̂Þ �MDS code, the
minimum and maximum number of storage nodes to access
in the proposed scheme is k̂ and n, respectively. We assume
that the CRC code always detects an error if it occurs.
Without loss of generality, we assume that all failures are
Byzantine failures, since s crash-stop failures can be easily
modeled by replacing n with n� s. An important metric of
the decoding efficiency is the average number of accessed
storage nodes when the probability of compromising each
storage node is p. Failure to recover data correctly may occur
in two cases: 1) v > n� k̂, where there is an insufficient
number of non-Byzantine storage nodes that are not crash-
stop, 2) bn�k̂2 c < v < n� k̂, where the sequential order of data
accesses from the data collector determines whether PDR can
successfully decode. As an example, suppose the first v
nodes accessed are all Byzantine. Then, successful decoding
is impossible, PDR terminates, and the communication cost
is at its maximum since all reachable nodes are accessed. The

HAN ET AL.: PROGRESSIVE DATA RETRIEVAL FOR DISTRIBUTED NETWORKED STORAGE 2309



main result is summarized in Theorem 1, and its proof is in
the Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2012.67.

Theorem 1. For any codeword, the average number of storage
nodes accessed and probability of successful decoding for the

PDR algorithm is given in

�Nðn; k̂Þ ¼
Xn�k̂
v¼0

n

v

� �
pvð1� pÞn�v

Xminðv;bn�k̂2 c;n�v�k̂Þ

i¼0

ðk̂þ 2iÞ
n�v
iþk̂�1

� �
v
i


 �
n

2iþk̂�1

� � � k̂

iþ k̂

� n� v� ðiþ k̂� 1Þ
n� ð2iþ k̂� 1Þ

þ
Xn�k̂
v¼0

n
n

v

� �
pvð1� pÞn�v 1�

Xminðv;bn�k̂2 c;n�v�k̂Þ

i¼0

0
@

n�v
iþk̂�1

� �
v
i


 �
n

2iþk̂�1

� � � k̂

iþ k̂
� n� v� ðiþ k̂� 1Þ
n� ð2iþ k̂� 1Þ

1
A

þ
Xn

v¼n�k̂þ1

n
n

v

� �
pvð1� pÞn�v

ð29Þ

Prsucðn; k̂Þ ¼
Xn�k̂
v¼0

n

v

� �
pvð1� pÞn�v

Xminðv;bn�k̂2 c;n�v�k̂Þ

i¼0

n�v
iþk̂�1

� �
e
i


 �
n

2iþk̂�1

� � � k̂

iþ k̂
� n� v� ðiþ k̂� 1Þ
n� ð2iþ k̂� 1Þ

:

ð30Þ

6.6 Decoding

If there are only crash-stop failures, then the decoding
complexity for DEC to reconstruct the entire data file is

T0

log q
� k3 � log2 q ¼ k3T0 log q XORs;

given that one multiplication costs log2 q XORs and there is
a matrix inversion for each group. For DFC codes, we have

T0

log q
� k log

k

�
� log q ¼ kT0 log

k

�
XORs;

because DFC uses the k log k
� belief propagation decoding

algorithm.
Detection and correction of errors, due to Byzantine

nodes, are computationally infeasible for both the DEC and
DFC codes. In particular, if we apply a CRC code for error
detection in a DEC/DFC code, a data-collector must
enumerate all possible k symbols from k corresponding
storage nodes until the original data can be reconstructed
correctly. Therefore, DEC and DFC are both unsuitable for
robust distributed storage systems with Byzantine nodes.
PDR is the only erasure coding scheme to efficiently
reconstruct data in a network of Byzantine nodes.

For PDR, we generalize the decoding complexity by
allowing for Byzantine and crash-stop failures. In testing the

CRC code in Section 6.5, one polynomial division is
performed. Since the degree of the dividend and divisor is
T � 1 and r, respectively, the computation complexity for
testing the CRC code is OðTrÞ. Let v be the number of
Byzantine nodes, or errors, when PDR terminates. In the ‘th
iteration or call of the IRD procedure, ‘ errors are assumed
and the number of erasures is n� k̂� 2‘. In the first iteration
only, allFj values are computed. The associated computation
complexity is Oðk̂ðn� k̂ÞÞ, since there are k̂ values Fj to
compute, and each is a product of n� k̂ terms. Then, for
every iteration, IRD computes two syndrome values,
determined by the Fj values computed. In the next iteration,
two more symbols are added to (16). Hence, the updated
syndrome values can be obtained by an extra Oðk̂Þ þOðn�
k̂Þ computations. To determine the error-locator polynomial,
the loop on (Line 8) of IRD is executed twice, with complexity
Oð‘Þ. Since we consider a software implementation, the
Chien search can be implemented substituting powers of �
into the error-locator polynomial. The Chien search tests at
most k̂þ ‘ positions to locate k̂ error-free positions such that
it takes Oððk̂þ ‘Þ � ‘Þ computations. To invert ĜG, we use an
algorithm closely related to the Lagrangian interpolation
formula with complexity, Oðk̂2Þ [17].

In summary, the computation in the ‘th iteration, for any
‘ > 1, is given by (31). Summing over all v iterations and
accounting for the cost of determining the Fj values on Line
2 of IRD, we have (32):

Lvð‘Þ ¼ Oðk̂2Þ þOðn� k̂Þ þOðk̂‘þ ‘2Þ ð31Þ

Lv ¼ Oðvk̂2Þ þOðk̂ðn� k̂ÞÞ þOðv2k̂Þ
þOðvðn� k̂ÞÞ þOðv3Þ:

ð32Þ

Since v is bounded above by the error-correction capacity
ðn� k̂Þ=2, the decoding complexity is no greater than
Oðk̂ðn� k̂Þ2Þ. When v is small, the term corresponding to
computing syndromes, Oðk̂ðn� k̂ÞÞ dominates. PDR re-
quires kd iterations to decode T . Hence, for the entire data,
the decoding complexity is Tmk2 XORs in the absence of
Byzantine storage nodes. When v nodes are Byzantine, the
complexity is given by

Tmðvk2 þ kðn� kÞ þ v2kþ vðn� kÞ þ v3Þ XORs: ð33Þ

6.7 Security

For generalized content distribution, decentralized erasure
and fountain codes achieve subquadratic computational
decoding complexity, even in the midst of Byzantine nodes.
Indeed, fountain codes can support incremental decoding
[18]. For distributed storage systems, however, none of these
codes support data reconstruction in polynomial time when
a subset of the networked storage nodes are Byzantine. In
this section, we address the security strength of our proposed
algorithm, PDR when there are Byzantine nodes.

Without loss of generality, assume that the Byzantine
nodes are j0; j1; . . . ; jv�1. Furthermore, these nodes collude to
forge data that can pass a CRC test. Suppose ffi is the portion
of the forged vector of information symbols in the ith group
that can pass the CRC test. Let f̂fi ¼ ffi þ uui, where uui is the
original vector of information symbols in the ith group after
successful decoding. Then, (34) holds, since PDR leverages

2310 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012



Reed-Solomon codes. cci is the original codeword and vv is the

compromised data due to the Byzantine nodes

ffiGG ¼ ðf̂fi þ uuiÞGG ¼ f̂fiGGþ fuiGG ¼ vvþ cci: ð34Þ

Let the number of nonzero symbols in vv be h. It is clear

that h � n� k̂þ 1, where n� k̂þ 1 is the minimum Ham-

ming distance of RS code, since vv is a codeword. In the

worst case, h matches n� k̂þ 1. An attacker must compro-

mise a subset of storage nodes, such that they store the

corresponding encoded symbols in ffiG, the codeword

corresponding to the forged vector of information symbols.
If the attacker compromises k̂ storage nodes, the attacker

can forge the data successfully, when the data collector

accesses these compromised storage nodes using PDR.

Suppose the attacker compromises b < k̂ storage nodes.

Using PDR, when h� b is no more than bn�k̂2 c, PDR can still

decode the received vector to ffiG. The minimum possible

value of b is dn�k̂þ2
2 e; hence, the security strength, the

maximum number of compromised nodes that cannot forge

the information data even when they collude, for IRD is

minfk̂; dn�k̂þ2
2 eg � 1. Moreover, any other cryptographic hash

function to increase the security strength against forging can

be utilized. In particular, the 32-bit CRC code can be replaced

with a 128-bit MD5 code.

6.8 Summary

Table 1 summarizes the analysis in this section. The bits

required to identify a coding group is negligible in the

overhead of all three schemes. Clearly, PDR has the

minimum dissemination cost. The encoding and decoding

of DFC can be made highly efficient, but only at the expense of

a high communication cost, as governed by �. Since the CRC

overhead of PDR is negligible (c.f.: Section 4), PDR achieves

the minimum cost for data dissemination and retrieval.

7 IMPLEMENTATION AND EVALUATION

In Sections 7.1 and 7.2, we corroborate our findings from

Theorem 1 with network simulations. Then, we compare

PDR with the state-of-the-art error-erasure decoding algo-

rithm for distributed storage systems containing both crash-

stop and Byzantine storage nodes.

7.1 Numerical Results

We verify the correctness of the analytical derivations in

Theorem 1 using Monte-Carlo simulations implemented

in Matlab.

7.1.1 Successful Decoding
Fig. 4 shows the distribution of the number of storage nodes

accessed when PDR terminates. The bars depict histograms

from Monte-Carlo simulations with 5,000 runs, and the

curves represent the numerical results from our analytical

model. We choose n ¼ 127, k ¼ 30, and p ¼ 0:2. From Fig. 4,

the analytical model is consistent with the Monte-Carlo

simulations. Moreover, increasing k̂ reduces the storage

requirements, but increases the cost of data retrieval,

corroborating our analysis in Section 6.

7.1.2 Retrieval
We use 1,023 storage nodes to simulate the communication

cost associated with data retrieval, and vary the number of

information symbols, k̂, from 101 to 401. We also vary the

Byzantine node rate p from 0 to 0.3, while keeping the number

of data nodes constant. Fig. 5 shows the increasing commu-

nication cost as the probability of failures increases. The

number of crash-stop failures is set to zero, and all Byzantine

failures result in incorrect data. Clearly, when the Byzantine

failure rate is small, the communication cost is close to k̂. And

when p increases, the communication cost monotonically

increases, as expected. We also analyze the success rate of

decoding. And observe that for k̂ 2 f101; 201; 301g and

p 2 f0; 0:05; . . . ; 0:3g, decoding will always be successful.

However, for k̂ ¼ 401, decoding is always successful only for

p 2 f0; 0:05; . . . ; 0:25g. When p ¼ 0:3, the probability of

successful decoding is only 60 percent.

HAN ET AL.: PROGRESSIVE DATA RETRIEVAL FOR DISTRIBUTED NETWORKED STORAGE 2311

TABLE 1
Performance Analysis

Fig. 4. Data retrieval cost for a ð127; k̂Þ-MDS; k ¼ 30. Byzantine node
rate is 0.2 and k̂ 2 fk2 ; k; 2kg.

Fig. 5. Number of storage nodes accessed as a function of the
probability of malicious attacks for a ð1;023; k̂Þ-MDS; k ¼ 101.



7.2 Impact of k̂ and k

The number of information symbols, k̂, is decoupled from
the number of data nodes k; this is in contrast to our previous
decentralized networked storage scheme [15]. Hence, k̂ and
k can be tuned to balance the trade off between dissemina-
tion and retrieval costs. Fig. 6 shows that the dissemination
cost of a 1 GB data item is a function of k̂ and k; the field size
for the RS codes is 1,024, and there are n ¼ 1;000 storage
nodes. For any value of k, increasing k̂ reduces the
dissemination cost, as the level of redundancy decreases.

In wireless sensor networks where data nodes are power
limited, the data collector typically has no power constraint.
Hence, the cost to disseminate coded symbols from data
nodes to storage nodes should be minimal. This can be done
by choosing k̂ so that k̂ > k. The total dissemination cost for an
item of size T , is given in (35) and is proportional to the ratio
of k and k̂, also corroborating our analysis in Section 6. If k̂ is
twice the value of k then the cost is half the cost corresponding
to k̂ equal to k. The data retrieval cost is then doubled

knm
dT=me
k̂

� �
: ð35Þ

7.3 Implementation Setup

We have implemented the proposed and baseline algo-

rithms, where each data node’s information is a memory

buffer in a single machine having 2.66 GHz Intel Xeon CPU,

4,096 KB cache and 2 GB RAM. A randomly generated
message is first partitioned into either 101 or 401 informa-

tion symbols and then encoded into n ¼ 1;023 coded
symbols of length 10,230 bits, and the finite field size is

1,024. A stored symbol is independently corrupted with
error probability p.

Comparing our error-erasure code to either decentralized

or fountain erasure codes for error correction performance is
pointless, since these codes cannot feasibly guarantee data

availability in the presence of erroneous symbols. Instead,
we provide a comparison to the state-of-the-art error-erasure

decoding algorithm, BMA. Here, we progressively retrieves
data from each storage node and performs decoding until

either the decoded symbols passes the CRC test or cannot be
decoded. The work of Goodson et al. employs this algorithm

[2]. In addition, we consider a genie form of BMA, BMA-
genie, that assumes full knowledge of the number of symbols
required for successful decoding. It decodes only once after

retrieving the sufficient number of symbols. BMA-genie
cannot be implemented in practice and is included for

comparison only.

7.4 Total Computation Time

Figs. 7a and 7b illustrates the computation time, in log
scale, spent in decoding when k ¼ 101 and k ¼ 401,

respectively; in these simulations, k̂ matches k. The storage
overhead n=k is 10.13 and 2.55 with the maximum number

of errors correctable being 461 and 311. From Fig. 7, we
observe that the BMA and IRD computation time increases

as p increases, but the rate of growth of IRD is much
slower. In Fig. 7a, where the code redundancy is high, IRD
is faster than the genie-aided BMA. This is because the

cost, Oððn� kÞ2Þ, of computing erasure polynomials dom-
inates the decoding time when p is small. Unlike BMA-

genie, IRD does not compute erasure polynomials. In our
implementation, the Byzantine node rate is 0.2, and there

are 200 data nodes. We employ a ð1; 023; k̂Þ �MDS code,
where k̂ 2 f50; 100; . . . ; 550g. The computation cost for

encoding is independent of k̂, and negligible compared to
the computation cost for decoding cost. The nonlinear

increase in the decoding complexity supports our theore-
tical derivations in (32).

2312 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012

Fig. 6. The impact of the number of information symbols, k̂, and data
nodes, k, on the communication cost of dispersing storage data.

Fig. 7. Decoding computation time as a function of the Byzantine node rate, p. Each coding group utilizes a ð1; 023; kÞ �MDS code. For the given
values of k, no algorithm can successfully decode when p > 0:3.



7.5 Decoding Breakdown

We break down the decoding computation time to under-
stand the dominant operations as the error probability
increases. The breakdown includes the times to find the
error-locator polynomial, find the error locations, and
solve for the information polynomial. We represent these
three times as elp-time, chien-time, and inv-mat-time,
respectively. This breakdown is also illustrated in Fig. 1,
where the first and second blocks correspond to the elp-
time, the third block to the chien-time, and the fourth block
to the inv-mat-time.

In Fig. 8a, when the error probability is low, the
computation of error-locator polynomials dominates for
small k̂, while the matrix inversion time becomes significant
when k̂ is large. In our implementation, the cost of a matrix
inversion is quadratic in the number of symbols decoded.
Although the Chien search has the highest asymptotic
complexity, it has the shortest running time. When the error
probability is high, Figs. 8b and 8c show that the computation
of error-locator polynomials dominates except in IRD.

The computation time in matrix inversion is negligible and
on the order of tens of milliseconds in BMA and IRD; it is
comparable to that of the BMA-genie, which assumes
knowledge of the number of errors in advance, and thus
performs a matrix inversion only once. The negligible
running time in matrix inversion occurs because the decod-
ing algorithm is likely to fail during or prior to the Chien
search on Line 33 of IRD; this holds even if the Byzantine node
rate is high. In most cases, BMA and IRD perform a matrix
inversion only once.

8 CONCLUSIONS

We have designed a highly computation-efficient and
communication-optimal algorithm, PDR, for distributed
storage systems, where storage nodes can be either
Byzantine or crash stop. The communication and compu-
tation costs for data retrieval are minimized by utilizing
intermediate computation results and retrieving only the
minimum data required for successful data reconstruction,
respectively.

Our in-depth analysis shows that decentralized fountain
codes and PDR are most suitable to networks without
Byzantine storage nodes because of the associated minimal
computation cost for fountain codes, and the minimal data
retrieval cost for PDR. However, when Byzantine nodes

exist, only PDR is suitable since it allows for error detection

and correction.

ACKNOWLEDGMENTS

Han’s work was supported by the National Science Council

of Taiwan, under grants NSC 96-2221-E-305-002-MY3 and

his visit to LIVE lab at University of Texas at Austin.

Omiwade and Zheng’s work is supported in part by US

National Science Foundation (NSF) CNS 0546391.

REFERENCES

[1] C. Karlof and D. Wagner, “Secure Routing in Wireless Sensor
Networks: Attacks and Countermeasures,” Ad Hoc Networks,
vol. 1, nos. 2/3, pp. 293-315, 2003.

[2] G.R. Goodson, J.J. Wylie, G.R. Ganger, and M.K. Reiter, “Efficient
Byzantine-Tolerant Erasure-Coded Storage,” Proc. Int’l Conf.
Dependable Systems and Networks, pp. 135-144, July 2004.

[3] H. Krawczyk, “Distributed Fingerprints and Secure Information
Dispersal,” PODC ’93: Proc. 12th Ann. ACM Symp. Principles of
Distributed Computing, pp. 207-218, 1993.

[4] T.S.D. Sheet, “Moteiv, San Francisco, CA, 2006,” 2004.
[5] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive

Playout Mechanisms for Packetized Audio Applications in Wide-
Area Networks,” Proc. IEEE INFOCOM ’94, vol. 2, pp. 680-688,
June 1994.

[6] J.S. Plank, J. Luo, C.D. Schuman, L. Xu, and Z. Wilcox-O0Hearn,
“A Performance Evaluation and Examination of Open-Source
Erasure Coding Libraries for Storage,” FAST ’09: Proc. Seventh
Conf. File and Storage Technologies, pp. 253-265, 2009.

[7] Y. Lin, B. Liang, and B. Li, “Data Persistence in Large-Scale Sensor
Networks with Decentralized Fountain Codes,” Proc. 26th IEEE
INFOCOM, pp. 6-12, 2007.

[8] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decen-
tralized Erasure Codes for Distributed Networked Storage,” IEEE
Trans. Information Theory, vol. 52, no. 6, pp. 2809-2816, June 2006.

[9] T.K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms. John Wiley & Sons, 2005.

[10] S. Lin and D.J. Costello Jr., Error Control Coding: Fundamentals and
Applications, second ed. Prentice-Hall, 2004.

[11] T.K. Truong, W.L. Eastman, I.S. Reed, and I.S. Hsu, “Simplified
Procedure for Correcting both Errors and Erasures of Reed-
Solomon Code Using Euclidean Algorithm,” Proc. IEE, vol. 135,
no. 6, pp. 318-324, Nov. 1988.

[12] S.-L. Shieh, S.-G. Lee, and W.-H. Sheen, “A Low-Latency Decoder
for Punctured/Shortened Reed-Solomoncodes,” Proc. IEEE Int’l
Symp. Personal, Indoor and Mobile Radio Comm., pp. 2547-2551,
Sept. 2005.

[13] J. Kurose and K. Ross, Computer Networks: A Top Down Approach
Featuring the Internet. Pearson Addison Wesley, 2005.

[14] I.S. Reed and X. Chen, Error-Control Coding for Data Networks.
Kluwer Academic, 1999.

[15] Y.S. Han, S. Omiwade, and R. Zheng, “Survivable Distributed
Storage with Progressive Decoding,” Proc. IEEE INFOCOM, pp. 1-
5, Mar. 2010.

HAN ET AL.: PROGRESSIVE DATA RETRIEVAL FOR DISTRIBUTED NETWORKED STORAGE 2313

Fig. 8. Average computational time breakdown for decoding one ð1;023; kÞ �MDS codeword, k 2 f101; 401g. Because IRD progressively decodes,
its performance does not deteriorate with an increasing Byzantine node rate, p.



[16] K. Araki, M. Takada, and M. Morii, “On the Efficient Decoding of
Reed-Solomon Codes Based on GMD Criterion,” Proc. Int’l Symp.
Multiple-Valued Logic, pp. 138-145, May 1992.

[17] H. William, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing. Cambridge
Univ. Press, 1988.

[18] M.N. Krohn, M.J. Freedman, and D. Mazieres, “On-the-Fly
Verification of Rateless Erasure Codes for Efficient Content
Distribution,” Proc. IEEE Symp. Security and Privacy, pp. 226-240,
May 2004.

Yunghsiang S. Han (S’90-M’93-SM’08-F’11)
received the BSc and MSc degrees in electrical
engineering from the National Tsing Hua Uni-
versity, Hsinchu, Taiwan, in 1984 and 1986,
respectively, and the PhD degree from the
School of Computer and Information Science,
Syracuse University, NY, in 1993. He was, from
1986 to 1988, a lecturer at Ming-Hsin Engineer-
ing College, Hsinchu, Taiwan. He was a teach-
ing assistant from 1989 to 1992, and a research

associate in the School of Computer and Information Science, Syracuse
University from 1992 to 1993. He was, from 1993 to 1997, an associate
professor in the Department of Electronic Engineering at Hua Fan
College of Humanities and Technology, Taipei Hsien, Taiwan. He was
with the Department of Computer Science and Information Engineering
at National Chi Nan University, Nantou, Taiwan, from 1997 to 2004. He
was promoted to professor in 1998. He was a visiting scholar in the
Department of Electrical Engineering at University of Hawaii at Manoa,
HI, from June to October 2001, the SUPRIA visiting research scholar in
the Department of Electrical Engineering and Computer Science and
CASE center at Syracuse University, NY from September 2002 to
January 2004, and the visiting scholar in the Department of Electrical
and Computer Engineering at University of Texas at Austin, TX, from
August 2008 to June 2009. He was with the Graduate Institute of
Communication Engineering at National Taipei University, Taiwan, from
August 2004 to July 2010. From August 2010, he is with the Department
of Electrical Engineering at National Taiwan University of Science and
Technology. His research interests are in error-control coding, wireless
networks, and security. He was a winner of the 1994 Syracuse
University Doctoral Prize. He is a fellow of the IEEE.

Soji Omiwade received the BSc degree in
computer science and the BSc degree in physics
at the Abilene Christian University, in 2005,
where he was a University Scholar, and the
recipient of the Margaret L. Teague Spirit of
ACU Award. He received the MSc and PhD
degrees in 2008 and 2011, respectively, from
the Department of Computer Science, University
of Houston. His research interests include
wireless mesh networks, wireless sensor net-

works, error-correcting coding theory, and robust distributed storage
systems. He is a member of the IEEE.

Rong Zheng (S’03-M’04-SM’10) received the
BE and ME degrees in electrical engineering
from Tsinghua University, PR China, and the
PhD degree from the Department of Computer
Science, University of Illinois at Urbana-Cham-
paign. She has been on the faculty of the
Department of Computer Science, University of
Houston since 2004, where she is currently an
associate professor. Her research interests
include network monitoring and diagnosis, cy-

ber-physical systems, and sequential learning and decision theory. She
received the US National Science Foundation (NSF) CAREER Award in
2006. She serves on the technical program committees of leading
networking conferences including INFOCOM, ICDCS, ICNP. She
served as a guest editor for the EURASIP Journal on Advances in
Signal Processing’s special issue on wireless location estimation and
tracking. She also served as a guest editor for the Elsevier Computer
Communications Journal’s special issue on cyber-physical systems.
She is a senior member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

2314 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 12, DECEMBER 2012


