IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

2303

Progressive Data Retrieval for Distributed
Networked Storage

Yunghsiang S. Han, Fellow, IEEE, Soji Omiwade, Member, IEEE, and
Rong Zheng, Senior Member, IEEE

Abstract—We propose a decentralized progressive data retrieval (PDR) mechanism for data reconstruction in a network of Byzantine
and crash-stop nodes. The scheme progressively retrieves stored data, such that it achieves the minimum communication cost
possible. In particular, PDR gracefully adapts the cost of successful data retrieval to the number of Byzantine and crash-stop storage
nodes. At the core of PDR is an incremental Reed-Solomon decoding (IRD) procedure that is highly computation efficient for data
reconstruction. IRD’s computation efficiency arises from its ability to utilize intermediate computation results. In addition, we provide an
in-depth analysis of PDR and compare it to decentralized erasure coding and decentralized fountain coding algorithms for distributed
storage systems. Moreover, our implementation results show that PDR has up to 35 times lower computation time over the state-of-
the-art error-erasure decoding scheme for distributed storage systems. In our analysis, we also show that the code structure of PDR
and the number of available storage nodes are independent of each other, and they can be used to control both the data dissemination

and retrieval complexity.

Index Terms—Fault tolerance, error control codes, Reed-Solomon codes, byzantine failure

1 INTRODUCTION

THE cost of storage has decreased to the point that most
storage-space providers offer terabytes of affordable
storage to their respective consumers. Moreover, low-power
storage media have become widely used in embedded
devices and mobile computers. In order to harness the ever
growing capacity and decreasing cost of storage for
distributed networked storage systems, the following
challenges must be addressed:

e Storage volatility due to network disconnections,
varying administrative restrictions and nodal-mo-
bility.

e Data erasures; the prevalent flash media has limited
program-erase cycles because repeated erasures of
any particular block may result in modifications of
neighboring blocks.

e Software bugs or malicious attacks, where an
adversary manages to compromise the system and
modify its data.

At the core of a robust networked storage system is a
coding scheme that maps information bits to coded bits that
are stored distributedly using a set of storage nodes. The
information bits can be retrieved from the coded bits, and
we refer to the units of this bidirectional mapping as

e Y.S. Han is with the Department of Electrical Engineering, National

symbols. In this paper, coded symbols and storage symbols
are used interchangeably. An (n,k) erasure code can be
defined by the following two primitives:

e encode c = (u,n,k) takes as input, k£ information
symbols u = [ug, u1,...,u;-1], and returns a coded
vector c¢ = [cy,¢q,...,¢,-1]. Similarly, the coded
symbols are stored on n storage nodes, one per node.

e decode u=(r,n,k) accesses a subset of storage
nodes and returns the original k information
symbols from possibly corrupted symbols.

For the decode primitive, if any & of the n coded symbols
suffice to reconstruct the original data, the code has optimal
reception efficiency and is referred to as an (n, k)-Maximum
Distance Separable (MDS) erasure code.

A crash-stop or erasure node in a networked storage
system is one that becomes unavailable because it can
neither transmit nor receive data. Byzantine nodes are those
nodes that fail in an arbitrary manner and cannot be
trusted. They are more pertinent than erasure nodes given
the prevalence of cheap storage devices, software bugs, and
malicious attacks [1]. Crash-stop nodes can be identified,
via keep-alive messages for instance. However, the identity
of Byzantine nodes can be known, to a data collector
requiring data reconstruction, only via an error-erasure
decoding algorithm.

Efficient encode and decode primitives that can detect
data corruption and handle Byzantine failures serve as a
fundamental building block to support higher level abstrac-
tions such as multireader multiwriter atomic register and
digital fingerprints in dependable distributed systems [2], [3].
Given the primitives’ fixed error correction capability, their
efficiency can be evaluated using the following: the storage
overhead, measured as the ratio between the number of
storage symbols and total information symbols; the encoding
and decoding computation cost; and the communication

2304

overhead, measured in terms of the total bits transferred in
the network for encoding and decoding. The communication
overhead is most significant in wide-area networks, sensor
networks, and low-bandwidth storage systems [4], [5]. In this
work, we propose efficient methods to achieve minimum
communication costs.

Reed-Solomon (RS) codes have been used for storage in
stand-alone storage systems [6]. However, our work
concerns RS codes for networked storage. Even though RS
codes can be applied to achieve minimum communication
overhead, their centralized nature and high coordination
overhead make them unsuitable [7], [8]. To address these
classical RS coding deficiencies and the need for error
correction capabilities in distributed storage systems, we
propose a storage-optimal and decentralized coding scheme
that disperses contents of a data file, and retrieves it
efficiently in networked storage systems. Our RS coding
scheme provides better performance than the decentralized
erasure and fountain coding schemes.

The key novelty of our solution lies in a progressive data
retrieval procedure, which retrieves just enough data from
live storage nodes and performs decoding incrementally. As
a result, both communication and computation costs are
minimized, and adapt to the degree of errors, due to
Byzantine nodes, in the system. We provide an analytical
characterization of the communication cost for data retrieval
using the proposed scheme in the presence of arbitrary
Byzantine nodes. Our implementation studies demonstrate
up to 35 times lower computation time in decoding, of the
progressive data retrieval scheme relative to the classical RS
decoding scheme. Moreover, the proposed scheme is
comparable to that of a genie-aid decoding process, which
assumes knowledge of failure modes. In this paper, we make
the following contributions:

e Design and implementation of a novel progressive
data retrieval algorithm that is storage and commu-
nication optimal, and computationally efficient.

e Provision of an analytical model to evaluate the
communication cost of the proposed data retrieval
algorithm.

e Security analysis of the proposed decoding scheme.

The rest of the paper is organized as follows. In Section 2,

we provide some background information on RS codes.
Related work is provided in Section 3, and the progressive
data retrieval scheme is presented in Section 4, with the
details of the incremental RS decoding algorithm in Section 5.
We derive the communication, computation, and security-
strength complexities of our proposed scheme in Section 6
and compare it to existing storage schemes. Implementation
and evaluation results are presented in Section 10 and we
conclude the paper in Section 13.

2 BACKGROUND

In distributed storage systems, ensuring data persistence
given the existence of crash-stop and Byzantine nodes in the
network requires the introduction of redundancy for data
storage. The simplest form of redundancy is replication; as a
generalization of replication, erasure coding offers higher
storage efficiency [9]. To store an arbitrary file using (n, k)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

erasure codes, we divide the file into groups of k£ symbols.
For each group, the k£ symbols are encoded into n coded
symbols and stored at n respective storage nodes.

2.1 RS Codes

An (n,k)-RS code is an (n,k)-MDS code with error
correction capabilities. They can recover the original code-
word when v symbols are erroneous, if v < |2=5=|, where s
is the number of erased symbols. RS codes are the most
well-known class of MDS codes. They operate on symbols
of m bits, and are linear codes where each symbol is in
GF(2™). n and k satisfy n = 2™ — 1 and n — k = 2t, where ¢
is the error correction capability of the code.

2.2 Encoding

Let the vector of k information symbols in GF(2™) be u =
[ug, u1, . . ., up—1] and u(x) be the information polynomial of u
represented as (1). The codeword polynomial, ¢(x), corre-
sponding to u(z) can be encoded as (2), where g(z) is a
generator polynomial of the RS code. The generator poly-
nomial can be computed as (3); o is a primitive element in
GF(2™) and can be determined in advance. b is an arbitrary
integer, and g; is in GF(2™). It follows from (2) and (3) that

ab, Pt .. b1 are the roots of g(z) and c(x)

w(r) =ug +wx + -+ IR A (1)
() = u()g(x) 2)

g(z) = (x — Oéb)(m — ab“) (- ab””’l)

(3)
= g0+ 1@ + o2’ + -+ gua®

An alternative encoding mechanism for RS codes is the
matrix-vector product shown in (4) [9]. G in (5) is the
Vandermonde matrix, and any k columns are linearly
independent. The constructions in (2) and (4) result in the
same Reed-Solomon code, when b equals 1

c=uG (4)
1 1 1 1
a o al a™
G- a2 (a2)2 (aii)Z (Oz”)Z (5)
O/«,fl (()[2)k_1 (a3)k—1 (an)k—l
2.3 Decoding

Denote the received polynomial as r(z); if there are neither
erasures nor errors in the received codeword, then r(z)
matches the original codeword polynomial, c¢(z). When
errors and erasures exist in 7(x), the decoding is a multistep
procedure: Auxiliary polynomials, also known as syn-
dromes, are first computed from the original codeword
¢(x). These syndromes are then used to compute an error-
locator polynomial that is used to identify erroneous symbols
in the received codeword. After all errors have been
identified and corrected in r(x), any k symbols are selected
and the original set of information symbols u(x) can be
derived by inverting the k columns of the Vandermonde
matrix that correspond to the & selected symbols.

HAN ET AL.: PROGRESSIVE DATA RETRIEVAL FOR DISTRIBUTED NETWORKED STORAGE

We discuss each step in detail, beginning with decoding
when there are only Byzantine nodes. Later, we generalize to
codewords having erasures. The received polynomial can be
written as a sum of the original codeword and the errors
introduced, as shown in (6). e(x) is the polynomial indicating
the locations and values of each error in r(z). Syndrome S; is
given by the expression in (7), for each ¢ in {b,b+1,...,
b+ 2t — 1}. Since g(x) and c(z) have o, o™, ... o?*?#1 as
roots, then if the ith symbol in the received codeword r(z) is
not erroneous, S; evaluates to zero

n—1

=Y e (6)

7=0

r(x) = c(z) + e(z) where e(z

Assume that v <t errors occur in unknown locations
JisJ2, - - -, ju Of the received polynomial. Then, e(x) in (6) can
be expressed as (8), and e, is the value of the /th error, for
each ¢ in {1,2,...,v}. A requirement for successful
decoding is to determine j, and e;, for all ¢. Instead of
solving the 2t syndrome equations in (7), an error-locator
polynomial is introduced in (9). For all £ in {1,2,...,v}, A,
are the coefficient of A(z), when the product is simplified,
where A is unit. By Newton's identity, we then have (10),
wherei € {b+v,b+v+1,...,b+ 2t — 1} [10]

z) = Z e.iij[(8)
(=1

v

Az) =

(1- a:a”

~
Il
—

(10)

— Z A]'Si,j.
j=1

The coefficients of the error-locator polynomial can be
determined by applying the classical Berlekamp-Massey
algorithm (BMA), Welch-Berlekamp (WB) or Euclid’s algo-
rithm to solve (10). Once all coefficients of the error-locator
polynomial are found, the values o/ can be determined by
successive substitution through a procedure known as the
Chien search. We then solve for each e; via the Forney
formula [10]. Fig. 1 summarizes the RS decoding process.

When both errors and erasures exist, an error-erasure
decoding algorithm must be implemented in order to decode
the received vector efficiently [10], [11], [12]. Let r(z) be the
received polynomial and r(z) = ¢(z) + e(z) + y(z) = ¢(z) +

A(z), where e(z) = 7~ 01 eja’ is the error polynomial, y(z) =
> ", ;% the erasure polynomial, and \(z) = >0 P\ =

e(z) + () the errata polynomial. For error-erasure decod-
ing, two extra decoding steps are needed compared with the
error-only decoding: calculation of erasure-locator polyno-
mial and computation of the modified syndromes. The
modified syndromes are then used to replace the normal
syndromes in the decoding procedure. If the location of
the erasures are given, the erasure-locator polynomial can be
calculated directly as follows. Let iy, is, . . ., i; be the s erasure

2305

Compute syndromes via power sums

Find error-locator polynomial from syndromes via the BMA

Identify error-free positions via the Chien search

|

Solve for information vector via a Vandermonde-matrix

Fig. 1. Reed-Solomon decoding for an arbitrary codeword.

positions. Using the definition of I'(z) shown in (11), the
modified syndromes are obtained by (12), where j is in {b +
s;b+s+1,...,b4+2t—1}

F(x):ﬁl—a Zfﬂ
=1

(11)

(12)

= Z Fs—ij—i~
=0

3 REeLATED WORK

XOR-based erasure-resilient coding schemes have been
applied to handle crash-stop failures. In practice, these
codes encode and decode data faster than finite field-based
RS codes [6]. However, they cannot handle Byzantine
failures. Our progressive data retrieval coding scheme can,
however, tolerate both crash-stop and Byzantine failures.
In the context of network storage for wireless sensor
networks, randomized linear codes and fountain codes have
been applied with the objective of a data collector retrieving
data from each of k data sources by accessing any & out of n
storage nodes [7], [8]. Although, up to n — k crash-stop node
failures can be tolerated, none of these methods are suitable
for data reconstruction when Byzantine nodes exist.
Goodson et al. propose a coding scheme that handles
Byzantine and crash-stop failures [2]. In particular, they
design a consistency protocol for asynchronous environ-
ments via versions. Their protocol bares similarities with our
progressive scheme in that it uses RS codes and accounts for
data integrity. However, it does not address the commu-
nication and computation aspects of progressive data
retrieval when there are failures in the distributed storage
system. Instead, coded fragments are retrieved one time, and
deemed one of three states: complete, incomplete, or
repairable, depending on the degree of errors in the system.

4 PROGRESSIVE DATA RETRIEVAL

Before presenting our proposed data reconstruction algo-
rithm for distributed networked storage, we explain how a
data file is stored in the network. We use the abstraction of a
data node that is a data source, where networked storage
nodes are used to achieve data persistence and any storage
node may become crash-stop or Byzantine. Any RS decoding

2306

Require: (n, k)-MDS encoding of original data, file
Ensure: Reconstructed data, file’, equals file or O
1: create an empty data-file, file’

2: for each encoded group [ro,71,. .., Tn—1] Of file do

3 ik
4 r; < retrieve [rj,,7j,,...,7;, | from any k nodes
5 repeat)
6: u «— ’I‘ié_
7 if CRC(u) is correct then
8 remove CRC header from u to obtain ug
9: append contents of ug to file'
10: end if
11: repeat
12: 11+ 2
13: retrieve r;,,7;, from any two remaining nodes
14: update r; with r;, and 7,
15: until IRD(k,n, 5%, r;) #0ori>n—1
16: until it >n —1
17: file' — 0
18: exit
19: end for
Fig. 2. PDR.

algorithm may fail to identify a data-integrity violation. Since
an RS decoding mechanism is at the core of our proposed
algorithm, each data node adds a message authentication
code to each data block it generates for data integrity. One-
way hash functions such as the MD5 or SHA-1 can be applied
[13], and we adopt CRC codes because they suffice to identify
errors [9], [14]. Let the size of the original file before adding a
CRC header be Tj bits. If the size of the CRC overhead is r
bits, then the probability of not detecting one error by the
CRC codeis 1/2". The overhead is dependent only on Tj and
r and can be amortized by using large data blocks.

After adding the CRC, each data block is then partitioned
into information symbols of length m bits and encoded
using either the polynomial or matrix product provided in
Section 2.2. The data node divides its data into [T/m]|
symbols, where T' = T} + r, and each symbol is an element
in GF(2™). Unlike our previous decentralized scheme for
distributed networked storage [15], the number of informa-
tion symbols, k, per encoding group of the proposed
scheme is decoupled from the number of data nodes, k.
Hence, we will employ an (n, l%)—MDS code. Next, the set of
[T/m] symbols are partitioned into d information groups
each of k symbols, where d is defined as shown in (13). CRC
codes are added to every information group, and the data
size T includes those bits added by CRC codes. The last
information group may have less than & symbols. In this
case, zeros are appended during the encoding procedure

PE PTQ”W.

(13)

We write the ith information group for encoding as the
information vector, u; = [wp, u“,...,ui(,;fl)}, where 1 <1 <
d. The data node encodes w; into c; = [cio, Ci1; - - -, Ci(n—1)]
with n symbols as (14), where G is the Vandermonde matrix
in (5), after substituting & in for k. The data node then packs

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

all ¢;5, 1 <i<d, and sends them with the index, j, to
storage node (j + 1) via the network

For data reconstruction, a data collector must access a
sufficient number of storage nodes to ensure data integrity.
Among n storage nodes, let the number of crash-stop nodes
that have not been accessed and the number of Byzantine
nodes be s and v, respectively. The Vandermonde matrix,
G, in (14) is a generator matrix for an RS code and thus an
error-erasure decoding algorithm can recover any code-
word if there is no error in at least k encoded symbols [9].
Without loss of generality, assume that the data collector
retrieves encoded symbols from storage nodes jo, ji, . . . ji_;-
If no error is present, the & symbols in the ith group of any
data node can be recovered by solving the following system
of linear equations:

[u,;(), U1y - - - ,ui<k71>]G = [Tjjo,'rjj] g 77‘1"]'[’71]7 (15)
where
1 1 1
ado alt adi-1
G=| @) (@ (i)

(@)F 1 (i) ! (adi-1)F1

G can be constructed by the primitive element and the
index associated with r;;,, 0 < £ < k.

From Section 2, we know that RS codes can recover from
any v errors, so long as v < |2=2=¢|. Therefore, if the number
of compromised nodes is small, more erasures can be
tolerated and less nodes can be accessed by assuming these
nodes are unavailable.

Our proposed data reconstruction algorithm, PDR, is
illustrated in Fig. 2. PDR proceeds in stages, where [errors
are assumed at stage ! and each stage corresponds to an
attempt to reconstruct the original codeword (Lines 12-14).
At the core of PDR is an efficient incremental RS decoding
algorithm, IRD, illustrated in Fig. 3. IRD allows for data
reconstruction even when some nodes are Byzantine or
crash-stop, and it can utilize intermediate computation
results from previous stages and decode incrementally to
avoid unnecessary computations.

If a call to IRD does not successfully decode on Line 15, or
the decoded codeword fails the CRC check on Line 7, then
there must exist more Byzantine nodes than IRD can handle at
this stage. In order to correct one more error, PDR retrieves fwo
additional symbols given that the number of erasures
allowed is reduced by two. Therefore, the total number of
symbols retrieved at stage lis k + 2. Using a (1,023,401)-MDS
code and a 1 percent error Byzantine node rate, 409.2 storage
nodes are accessed on average (c.f.: Section 10). Hence, PDR
makes [192-401] — 5 decoding requests to IRD. Consider a
naive scheme that retrieves coded symbols from all reachable
storage nodes and decodes only once. The naive scheme may
incur less total computation than PDR, but has a high
communication cost, since coded symbols must be retrieved
from every node that is not crash-stop. PDR handles such
tradeoffs between computation and communication more

HAN ET AL.: PROGRESSIVE DATA RETRIEVAL FOR DISTRIBUTED NETWORKED STORAGE

Input: (l%,n,ﬂ,)

Output: k error-free symbols of 7, or 0
1: if / =1 then
2. compute F; via (27) for all j ¢ Uy

3 AO(2) — 1; QO (z) — 0; 2O (z) — 0,00 (z) — 1
4: end if

5: fori71t02do

6: :L'EZ) <—on() — SO (x Ee))

7: end for

8: for i =1 to 2 do

9: b(z DI (4 1)(/54)) (()A(/ 1)(®)

10: if bfz Y = 0 then

11: AT(z) — AV (2); 7 (2) — (z — 201 (z)
12: 0T (z) — QD (2); @7 (2) — (z — 2.”)d"V) ()
13: else

14: agéfl) — ol- 1)((4’)) (f)q)(é 1)(55))

15: 0T (2) — (x — ") Q- 1>(;)

16 OT(z) « (z — TJZZ) A (g

172 Q7 (2) — b Ve (@) — ol VAU (2)

B AT(r) — VB (2) - alDACD (p)

19: end if

20: if rank [QT (), AT (z)] > rank [@T(.Z')7(I)T(CL‘)] then
21: swap [Q7(z), AT (z)] < [0T(x), @7 (z)]
22: end if

23: if i =1 then

24 QU1 (z) — QT (2); A D(z) — QT (x)
25: Ol (z) « 0T (z); V() — T (z)
26: else

27: QO (z) — QT (z); AO(z) — QT (z)

28: 0 (z) — 0T (z); @O (z) — &7 (x)

29: end if

30: end for

31: if deg(A“)(z)) = ¢ then

32: £« Chien-search(A()(x))

33 if £ <n—kand (= deg(A¥)(z)) then

34: return any k error-free symbols of 7,
35: end if
36: end if

37: return O

Fig. 3. IRD.

gracefully. For any coding group, if all symbols have been
retrieved and PDR still cannot successfully decode, then
Line 17 signals a decoding failure.

PDR achieves minimum communication cost as addi-
tional symbols are retrieved only when necessary. Moreover,
we may substitute in the state of the art Berlekamp-Massey
algorithm or either of the Welch-Berlekamp or euclidean
algorithm in for IRD, on Line 15 to reconstruct the original
codeword [9]. Our implementation results, however, show
that IRD is up to 35 times faster than the BMA and we
provide the reasons why in Section 5.

5 IRD

Compared to classical RS decoding, IRD utilizes intermediate
computation results and decodes incrementally as more
symbols become available. In this section, we characterize the
operations in Fig. 3 and highlight the incremental computa-
tion process of IRD.

2307

5.1 The Basic Algorithm

Given the received coded symbols [ry,rq,...,r,—1] with
erasures set to be zero, the generalized syndrome poly-
nomial S(z) can be calculated as follows:

Q) : »Qz) — Q)
Z—_ D B L)

where Q(z) is an arbitrary polynomial with degree n — &
[16]. Assume that v errors occur in unknown locations
ji,J2,...,J, and s erasures in known locations mq, ma, ...,
m, of the received polynomial. Then,

Zeﬂxﬂ and 71') Z'me

ej, is the value of the /th error, £ =1,...,v, and ,,, is the
value of the /th erasure, /=1,...,s. Since the received
values in the erased positions are zero, 7, = —c¢,, for
¢=1,...,s. The decoding problem is to determine all j, e;,,
and v, Let E={j,...,j5}, M={m,...,ms}, and
D = EUM. Clearly, ENM = (. A key equation for decod-
ing RS codes is

A(@)S(z) = U(2)Q(z) + Q(), (17)
where
A@) =@ -o) =@ - o)) [[(@-a)
jeb JjEE jeEM (18)
= Ap(z)Am(z)
z) =Y Mo J] (@—a) (19)
jeD ieD,i#]
=2 2e"Q@) [@—a). (20)

j€D €D itj

If 2u4+s<n—k+1, then (17) has a unique solution
{A(z), ¥(z),2(z)}. Instead of solving (17) by the euclidean
or Berlekamp-Massey algorithm, we introduce a reduced
key equation that can be solved by the WB algorithm [9],
[16]. Let Q = {j|Q(a?) = 0}. Let a set of coordinates U C
{0,1,...,n— 1} be defined by U=MnNQ. A polynomial
Au(z) is then defined by Auy(z) = [[;cy(z - a’), which is
known for the receiver since Q(x) and M are both known.
Since Ay (x) divides both A(z) and Q(x), according to (17), it
also divides Q(z). Hence, we have the following reduced
key equation:

A2)S(2) = ¥(2)Q(x) + Qx), (21)

where

A(z) = A(z)Au(z)

Q(x) = Q(z)Au(x)

Q(z) = Qx)Av(z).
A(z) is a multiple of the error-locator polynomial Ag(z).
The reduced key equation has a unique solution if (22)

holds where deg(-) is the degree of a polynomial, and |U] is
the cardinality of U. For all j € Q\U, by (21), we have (23),

2308

since Q(a’) = 0. Note that o/ is a sampling point and S(a)
the sampled value for (23). The unique solution
{A(z),Q(z)} can then be found by the WB algorithm with
time complexity O((n — k — |U])?) [9]

deg((x)) < deg(A(@)) < "Iyl ()
A?)S(a?) = Qo). (23)

Once all coefficients of the errata polynomial are
determined, all symbols having errors can be determined
by successive substitution through the Chien search. When
the solution of (21) is obtained, the errata values can be
calculated. Since recovering the errata values is unnecessary
for our problem, its computation is omitted. In summary,
there are three steps in the decoding of RS codes that must be
implemented. First, the sampled values of S(a/) for j € Q\U
must be calculated. Second, the WB algorithm is performed
based on the pairs (a/, S(a/)) in order to obtain a valid A(z).
If a valid A(z) is obtained, then error locations are found by
Chien search; otherwise, there is a decoding failure.

5.2 Incremental Computation

To reconstruct the original file, the data collector retrieves
encoded symbols from any £ storage nodes. Let Q(z) in (16)
be given by the product in (24), where the data symbol in
position my is erased. Moreover, these positions are erased
just before the first iteration on Line 12 of PDR. Finally, the
generator polynomial of the RS code encoded by (14) has
a"F o k1« as roots

Q) = (2 -

In the /th iteration, ¢ errors and n — k — 2¢ erasures are
assumed in the codeword. Let (j(la +1)and (jg) + 1) be the
two storage nodes accessed in the /th iteration. From U, in
(25) and the fact that the WB algorithm is an iterative
rational interpolation method, IRD determines values for
AO(z) and QU (z) that satisfy (26), where S()(z) is the
generalized syndrome with r; = 0 for all r; € Uy

Ozm”)(l’ _ aml) . (:E _ a’”n%—l)_

(24)

U() = {mo, - ,mnfk;l} 925
¢ /71\{11) J2 }
A9 SO (f) = QO () for all j € Up\U;. (26)

It has been shown that deg(A")(z)) > deg(Q") (r)) for any
¢, a feature of the WB algorithm [9]. Thus, if deg(A)(x))<
%H'U" — |Uy| =€+ 1/2, then a unique solution will exist
via (22). By the definition of the generalized syndrome

polynomial in (16), for i € Uy\U,, we have

SO (at) = nif ria’ 7@(&) — Q.(aj)

= o' — o
n—1 j
0ol . .
= Z o’ @ +ri’ Q' (a') (27)
7=0.7¢Uo oo
n—1
= > ot
ol —
7=0,7¢Uy

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.23, NO. 12, DECEMBER 2012

where Q'(z) is the derivative of Q(z) and F; = r;a/Q(a’).

Note that (28) follows, and S)(a) is not related to any r;,

where j € Uy and j # i
Q) =

H ol — o™,

jeUo,m;#i

Hence, S~V (a') = S (o) for all i € Uy\U,_;. This fact
implies that all sampled values in previous iterations can be
directly used in current iteration of the WB algorithm.

For any two polynomials, N(z) and W (z), we define the
rank[N(z), W(z)] as max[2-deg(W(z)),1+ 2 - deg(N(x))].
IRD returns k error-free symbols whenever a codeword
can be successfully decoded and 0 otherwise. Specifically, if
the degree of the error-locator polynomial does not equal to
the number of roots determined by the Chien in Line 33,
then the codeword was not successfully decoded.

(28)

6 PERFORMANCE ANALYSIS

In this section, we quantitatively analyze PDR and compare
it to Decentralized Erasure Codes (DEC) and Decentralized
Fountain Codes (DFC) [7], [8]. Our network consists of k
data nodes and n storage nodes, and each data node
requires robust distributed storage of its file of size Tj. We
proceed first by briefly describing each coding scheme.
Then, we characterize each one over the following: the total
storage and its associated overhead, communication and
computation corresponding to data dissemination and data
retrieval when nodes fail, and the security strength.

DEC. Each storage node selects random and independent
coefficients in a finite field IF,, and stores a linear combina-
tion of all the received data from the k data nodes.
Randomized linear codes are used, where each data node
routes its packet to at least }logk storage nodes. A data
collector queries at least k storage nodes for data retrieval. In
the absence of Byzantine storage nodes, data retrieval is
successful with high likelihood if the finite field size is large.

DFC. Each storage node s;, chooses a degree d;, defined
as the number of data symbols required to form a linear
combination. Node s; then XORs d; data symbols, from d;
arbitrarily chosen data nodes, where each data symbol is
selected from IF,. DFC trades off communication for
computation in that decoding requires more than k storage
nodes to be contacted, though both encoding and decoding
computations are linear in the number of original symbols.
We will show that the probability of successful decoding is
given by a parameter, 6.

PDR. The k data nodes collectively generate kT bits, Tj
bits per data node. Since each PDR data node adds » CRC bits
to its data, the file size at each datanodeis T' = Ty + r. In our
analysis, the product of an m; and m»-bit symbol requires
mimgy XORs, and an addition requires only m; XORs, where
the field of operation for the symbols is IF,,, and m; > ms.
DEC and DFC both have one data symbol per data node for
each coding group, while PDR encodes k data symbols per
data node for each group. Consequently, each data node in
DEC/DEFC and PDR has (13;", - and d groups per data node,
respectively, where d is given in (13). We show later in this
section that, although fountain codes have low encoding and

HAN ET AL.: PROGRESSIVE DATA RETRIEVAL FOR DISTRIBUTED NETWORKED STORAGE

decoding computational complexities, PDR offers a much
lower communication cost for data retrieval.

6.1 Storage

The storage complex1ty for DEC is |_10g 2| - log ¢ ~ T bits for
each storage node, since each storage symbol contains log ¢
bits, the field of operation is IF;, and there are [lo | groups.
Since each storage node stores linear combination coeffi-
cients, where log £ data nodes map to one storage node, the
overhead to store the coefficients, per storage node is

log k - (1og q+ [log k] + Pog [k%]])

~ log klog q bits.

The outer logk term corresponds to the set of data nodes
mapped to a storage node, while the inner one corresponds
to the bits required to identify any mapped data node. The
last term identifies the coding group.

Similar to DEC, the storage complexity for DFC per
storage node is also T} bits. The overhead complexity per
storage node is given by

log%C . ([log k] + [log {%—‘ —‘)bits.

The derivation is similar to that of DEC except that the
average degree of a storage symbol is log% and there are no
linear combination coefficients, since every linear combina-
tion is simply an XOR of a set of data symbols.

Each data node in PDR encodes its own data with &
symbols per group to all storage nodes. Given there are d
groups and the application of the CRC, the per-node storage
complexity is 7" bits. Because PDR utilizes a code structure
known to all storage nodes, its overhead complexity per
storage node is [log d], the bits required to index each group.

6.2 Data Dissemination
The DEC dissemination cost is

kflok

T
[—‘ log g =~ nT} log kbits,
k 0gq

given that there are k data nodes, and each one sends its
data Zlogk times, for all [o] groups. Similarly, the
dlssemmatlon cost for DFC is

k[T k
n-log—- 0 1. log ¢ =~ nTj log - bits,
6 |logq 6

since there are n storage nodes, and each one stores log%
symbols on average. Unlike the decentralized erasure and
fountain codes, PDR does not replicate transmissions to
storage nodes. Therefore, its dissemination matches its
storage cost.

6.3 Encoding

Assume a software implementation on field operations
without lookup tables. For DEC, a linear combination
coefficient and a data symbol contain log ¢ bits. Hence, the
computation cost of encoding per storage node is

Ty
(log?q) - logk - { —‘ XORs,
log

2309

since the cost of a multiplication is log” ¢ XORs, each symbol
is the result of log k linear combinations, for all groups.
For DFC, the encoding complexity per storage node is

E [T,
logg - log 5 - {@} XORs,

si